Muscarinic acetylcholine receptors enhance neonatal mouse hypoglossal motoneuron excitability in vitro.
نویسندگان
چکیده
In brain stem slices from neonatal (postnatal days 0-4) CD-1 mice, muscarinic ACh receptors (MAChRs) increased rhythmic inspiratory-related and tonic hypoglossal nerve discharge and depolarized single hypoglossal motoneurons (HMs) via an inward current without changing input resistance. These responses were blocked by the MAChR antagonist 1,1-dimethyl-4-diphenylacetoxypiperidinium iodide (4-DAMP; 100 nM). MAChRs shifted voltage-dependent activation of the hyperpolarization-activated cation current to more positive levels. MAChRs increased the HM repetitive firing rate and decreased rheobase, with both effects being blocked by 4-DAMP. Muscarinic agonists reduced the afterhyperpolarization of single action potentials (APs), suggesting that small-conductance Ca(2+)-dependent K(+) current inhibition increased the HM firing rate. Muscarinic agonists also reduced the AP amplitude and slowed its time course, suggesting that MAChRs inhibited voltage-gated Na(+) channels. To compare muscarinic excitation of single HMs to muscarinic excitatory effects on motor output in thicker brain stem slices requiring higher extracellular K(+) for rhythmic activity, we tested the effects of muscarinic agonists on single HM excitability in high-K(+) artificial cerebrospinal fluid (aCSF). In high-K(+) aCSF, muscarinic agonists still depolarized HMs and altered AP size and shape, as in standard aCSF, but did not increase the steady-state firing rate, decrease afterhyperpolarization, or alter threshold potential. These results indicate that the basic cellular response of HMs to muscarinic receptors is excitatory, via a number of distinct mechanisms, and that this excitatory response will be largely preserved in rhythmically active brain stem slices.
منابع مشابه
Behavioral/Systems/Cognitive 4* Nicotinic Receptors in preBötzinger Complex Mediate Cholinergic/Nicotinic Modulation of Respiratory Rhythm
Acetylcholine and nicotine can modulate respiratory patterns by acting on nicotinic acetylcholine receptors (nAChRs) in the preBötzinger complex (preBötC). To further explore the molecular composition of these nAChRs, we studied a knock-in mouse strain with a leucine-to-alanine mutation in the M2 pore-lining region (L9 A) of the nAChR 4 subunit; this mutation renders 4-containing receptors hype...
متن کاملP2 receptor excitation of rodent hypoglossal motoneuron activity in vitro and in vivo: a molecular physiological analysis.
The role of P2 receptors in controlling hypoglossal motoneuron (XII MN) output was examined (1) electrophysiologically, via application of ATP to the hypoglossal nucleus of rhythmically active mouse medullary slices and anesthetized adult rats; (2) immunohistochemically, using an antiserum against the P2X2 receptor subunit; and (3) using PCR to identify expression of P2X2 receptor subunits in m...
متن کاملترکیبات ارگانوفسفره و سیستم گابائرژیک مغز
Organophosphorus (OP) compounds are cholinesterase inhibitors widely used as pesticides in agriculture and nerve agents in battlefields. Exposure to these compounds leads to accumulation of acetylcholine at cholinergic synapses and overstimulation of muscarinic and nicotinic receptors by inhibiting the enzyme acetylcholinesterase. Seizure activity is one of the major manifestations of OP poison...
متن کاملNicotinic excitation of rat hypoglossal motoneurons.
Hypoglossal motoneurons (HMNs), which innervate the tongue muscles, are involved in several important physiological functions, including the maintenance of upper airway patency. The neural mechanisms that affect HMN excitability are therefore important determinants of effective breathing. Obstructive sleep apnea is a disorder characterized by recurrent collapse of the upper airway that is likel...
متن کاملThe role of acetylcholine muscarinic receptors in the rat basolateral amygdala on morphine-induced place preference
Some studies have shown that acetylcholine muscarinic receptors involved in the opiate reward. In the present study, the effect of intra-basolateral amygdale (BLA) acetylcholine muscarinic like receptor agonist (physostigmine) and antagonist (atropine) on the acquisition of morphine-induced place preference has been investigated in male Wistar rats. For this purpose, two 22 gauges guide cannula...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of applied physiology
دوره 113 7 شماره
صفحات -
تاریخ انتشار 2012